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Symmetry groups and systems of covariance are investigated in the framework 
of quantum probability theory. It is shown that a measurement X can be represen- 
ted by a positive operator-valued measure ~ s  on a sector S of the amplitude 
space. Moreover, X s provides a generalized system of covariance for the gen- 
eralized unitary representation of a symmetry group. 

1. INTRODUCTION 

The author has recently developed a quantum probability theory 
(Gudder, 1988, 1989, 1990) based on ideas due to Feynman (1948; Feynman 
and Hibbs, 1965). The main principle in this framework is that the amplitude 
of  a measurement outcome x is the "sum" of the amplitudes of the alterna- 
tives (or samples) that result in x and the probability that x occurs is the 
absolute value squared of its amplitude. I first review the mathematical 
formulation of this principle. The basic concepts of  this formulation are 
measurements and amplitudes. These are defined as certain functions on the 
sample space fL I define a superposition relation on the set of  amplitudes 
and construct sectors in the amplitude space. These sectors correspond to 
superselection sectors for a physical system. I then show that a measurement 
X can be represented by a positive operator-valued measure )~s on an arbi- 
trary sector S. 

The remainder of  the paper is devoted to the study of symmetry groups. 
A symmetry group G is defined as a group of bijections on the sample space 

that preserve the measurement structure. A symmetry group induces a 
generalized unitary representation Ug, g~G, on the amplitude space in a 
natural way. The unitary transformations Ug, g~G, then map a sector S 
onto other sectors UgS. The main result shows that ~ s  provides a generalized 
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system of covariance for the generalized unitary representation Ug. It is 
shown that if G leaves sectors invariant, then )~s gives an ordinary system 
of covariance for the unitary representation Ug. 

2. PRELIMINARY RESULTS 

This section reviews some of the basic principles of quantum probability 
theory and presents various preliminary results that will be needed in the 
sequel. For further motivation and details see Gudder (1988, 1989, 1990). 

Let ~ be a nonempty set which we call a sample space and whose 
elements we call sample points. A surjection X" ~ ~ R(X) is a measurement 
if the following conditions hold. 

(M1) R(X) is the base space of a measure space (R(X), Zx, Px). 
(M2) For every xeR(X),  X-I(x) is the base space of a measure space 

(x- '  (x), Y L ~ ) .  

We call the elements of R(X) X-outcomes, the sets in Zx X-events, and 
X-l(x) the fiber (or sample) over x. We call Hx=L2(R(X), Zx, Px) the 
Hilbert space for X. Denote by ,~r ) the set of all measurements on ~. A 
subset d _ _ _ d ( ~  ) is called a catalog if for any co, co'ef~ there exists an X e J  
such that X(co) r A function f :  ~ --, (2 is an amplitude for a catalog 
~ if the following conditions hold. 

(AI) f lX-J(x)eLt(X-l(x),  Z~c, p}) for every xeR(X) and X e d .  
(A2) fx=_Sfdp~eHx for all X e d .  
(A3) [Ifx[I = Ilfrl[ for every X, Yesr 

We denote the set of amplitudes for ~r by ~t~(A) and call ~f(A) the amplitude 
space for d .  For f e ~ ( ~ )  we write [If[I = [Ifxl[, where Xe~r is arbitrary, 
and if [[ f I[ = 1, we call f an amplitude density. Moreover, we denote the set 
of amplitude densities by ~(~r Notice that if f ea f~ (d ) ,  aeC,  then 
afe~f~(~r ') and IlafJl=lal ][f[[. Also, if f e J c f ( ~ )  with ][fl[~:O, then 
f/l[ f [I e @(d) .  

l f fe@(~r  we call fx the (X,f)-wave function. We interpret f(c0) as 
the amplitude of the sample point co and fx(x) as the probability amplitude 
of the X-outcome x. The probability density at x is then given by Ifx(x)l 2. 
We define the (X,f)-probability of an X-event A by 

Px,f(A) = f A Ifxlz dpx 

Notice that Px.f is a probability measure on Y~x which we call the f-distribu- 
tion of X. 
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For f, g~ff(d) we writefsg if for every X, Yed we have 

ffxgxdpx= ffrg,.dpr (2.1) 

If (2.1) holds, we denote this expression by ( f ,  g). Notice that s is a reflexive, 
symmetric relation and i f f s  g, then afs g for all a~C. We call s the 
superposition relation. 

Theorem 2.L Let f, g69r Thenfsg if and only i f f+g ,  

f+ ige~t~ 

Proof Suppose fsg. Then f+g clearly satisfies (AI) and (A2). 
Moreover, 

f l(f +g)xl2 dpx= f l(fx+gx)12 dpx 

Ilfll=+ [Igll2 +2 Re ffxgx dpx (2.2) 

so condition (A3) holds. Hence, f+gEYg(d). Sincefs (ig), it follows that 
f+ ig~f~(d). Conversely, i f f + g ~ ( d ) ,  then from (2.2) we have 

Re ffxgxd#x=Re ffrgrd  . 
for every X, Yed. If, in addition, f +  ige~(d), then since 

f I(f + ig)xl2 dpx= f l( fx + igx)12 dpx 

[if[[2+ [[g][2+2 Im Ifxg, x 
J 

we have 

for every X, Y e d .  It follows thatfsg. 

Im ffxgxd~x=Im ffrgvdpr 
[] 
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Corollary 2.2. For f ,  g e ~ ( d ) ,  f s  g if and only if af+ bgegff(d) for 
every a, b e C. 

For B~_~(d)  we write 

B s= { f e ~ ( d ) : f s g  for all geB} 

We call B~_.Cg(d) an s-set if B~B ~. Thus, B is an s-set if and only i f f s g  
for every f ,  geB. It is clear that singleton sets are s-sets and hence every 
f e ~ ( d )  is contained in an s-set. Moreover, by Zorn's lemma, every s-set 
is contained in a maximal s-set. We denote the collection of maximal s-sets 
by J l (d) .  An element of J g ( d )  is a maximal set of amplitudes for which 
superpositions are allowed. They correspond to superselection sectors for a 
physical system. Let MeJg(d) .  If f ,  geM, a, beC, then by Corollary 2.2, 
a f+bge~(d ) .  Also, it is clear that (af+bg) s h for every heM. Since M is 
maximal, af+bgeM. Hence, M is a linear space. We call fe;,~ff(d) a null 
amplitude if I l f t l  =0. It is clear that the set of null amplitudes forms a 
subspace of every Me.//g(d). If  we identify amplitudes that differ by a null 
amplitude, it is straightforward to show that ( . ,  �9 ) is an inner product on 
M. The Hilbert space formed by completing M relative to this inner product 
is called the sector generated by M. The collection of all sectors is denoted 
5P(d).  In general, d can have many sectors (Gudder, to appear). 

In the sequel, S will denote a fixed sector generated by M e  ~ ' ( d ) .  For 
X e d ,  define UxM: M ~ H x b y  u Uxf=fx.  Then U~ t is a linear transformation 
satisfying 

(U~f, U~g)= (f ,  g) (2.3) 

for all f ,  gEM. Since M is dense in S, there exists a unique linear extension 
U s of U~ t. It follows from (2.3) that uS: S -o Ilx is a unitary transformation 
and its range USxS is a closed subspace of Hx. Let pS be the orthogonal 
projection of Hx onto uS-s and define vS: H x ~ S  by VSx=(US)-Ie s. 

S S S Notice that s s UxVx=pSx and VxUx=L For AeZx define 3( (A): S ~ S  by 
f(S(A)=Vsz~US, where ZA is the characteristic function projection 
Z Ah (x) = Z A (x)h (x). Clearly, X S(A) is a bounded linear operator. Moreover, 
x s ( A )  is positive since 

(~S(A)f,f)=(VSxzAUS f, f ) =  s s s (PxXAUxf, U x f )  
S =(ZAUxf, U~rf) s = IIZA Wxf II 2 > 0  (2.4) 

for a l l f eS .  We also obtain from (2.4) that 

(X S(A)f , f)  < I[ f ]] 2 
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so O<f(s<I.  I f f e ~ ( ~ r  n S, then applying (2.4) gives 

( X S ( A ) f , f )  = [IZA fxl[ z = PX,T(A) 

so )~s determines the f-distribution of X. Finally, A ~--~XS(A) is a positive 
operator-valued (POV) measure from Ex to S. Indeed, XS(R(X))= I and if 
A~sEx are mutually disjoint, then 

where convergence is in the strong operator topology. We conclude that 
every Xe~r  can be represented by a POV measure from Ex to S. 

3. SYMMETRY GROUPS 

Ifg~, g2 are bijections from ~ onto ~ ,  we denote their composition gl og2 
simply by g~g2. Under this operation, the set of  all bijections G becomes a 
group. The identity e E G is the identity function. If  g~  G, B _  ~,  we use the 
notation 

gB = {g(r : co~B} 

For  a catalog d c_ ~ ( f~  ), we say that a subgroup G c ~ preserves fibers if 
for every X ~ ~r x e R(X ), g~ G, gX-  J (x) is an X-fiber. Clearly, if G preserves 
fibers, then for fixed g~G, the map X - l ( x ) ~ g X - l ( x )  is a bijection on the 
set of X-fibers. Moreover, for xsR(X) ,  gsG there exists a unique xg~R(X) 
such that gX-J(x)=X-l(x~).  Hence, x~--~Xg is a function from R(X) 
into R(X). 

Lemma 3.1. If G preserves fibers, then X~Xg is a bijection on R(X) for 
every X s ~r , g s G and Xe,g2 = ( Xg2)g , for every g a , g2 6 G. 

Proof To show that x~--~Xg is injective, suppose xg=Xg. Then 
gX-J(x) =gX-I(x'), so X - I ( x ) = X - I ( x  ') and x=x'.  To show that X~Xg is 
surjective, let x~R(X).  Then g-lX-~(x)=X-~(xe-,). Hence 

x-'(x) =gX-~(x~-,) =x-'[(x~-%] 
Therefore, x =  (Xg t)g. Finally, for g~, gESG we have 

X-'[(xg2)g~] = g,X-'(xgz) = g,g2X-' (x) = X-'(Xg,g2) 

Hence, Xg~g~ = (Xg~)g,. II 

If G preserves fibers, g~G, and A c_ R(X), we use the notation 

gA={~:x~A} 
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Proof 
have 

We say that G preserves events if for every Xed,  g~ G, A w-,gA is a bijection 
on Y~x. If  G preserves fibers and events, then G is a symmetry group on ~r if 
for every X ~ r  we have: 

(S 1) glX-~ (x) map Z~- onto Z~ and px~(gB) = p~.(B) for every x E R(X) 
and B~E~. 

(S2) px(gA)=px(A) for all A~Ex. 
In the sequel, G will denote a symmetry group on zg. We interpret G as a 
group of  bijections that preserves the measurement structure. F o r f e ~ ( ~ r  
g~G, define Ugf: ~"~"'~ C by Ugf(og)=f(g-~co). Notice that U~=L 

Theorem 3.2. (a) The map Ug is a bijection on ~r162 satisfying 
Ug,g~= Ug, Ug 2 for every g~, g2~G. (b) If  M ~ ' ( ~ r  then UgM~Jg(zaQ and 
Ug is a unitary transformation from M onto UgM. 

(a) For feocf(~r X~s~, Ugf satisfies (A1), and by (SI) we 

r 
(Ugf)x= ..J,~-'(x) Ugf(co) dp~r(co) 

= f f(g-'eo) ala~(og) 
:x -l(x) 

=fx f(g-lc~ dPxg-l(g-lc~ -I(xg-I) 

=fx(Xg-,) (3.1) 

Hence, applying ($2) gives 

,,(Ugf)x,,2= f lfx(x~-,), 2 dpx(X)= f ,fx(x)[Z dp(x)=l, fxl, 2 

Thus. Ugfsd'cf(d). It is clear that Ug is injective. To show that Ug is surjec- 
tire. suppose h ~ ( d ) .  Define f :  ~ -~ C by f(c0) =h(gco). Then f ~ ' ~ ( d )  
and Ugf=h. Finally. we have f o r f ~ o u f ( d )  

Ug,g2f(fo ) =f(g~l g-(I co)= Ug2f(g~J co)= Ug, Ug2f(o) ) 

(b) I f fs  h, then by ($2) and (3.1) we have 

f ( Ugf)x(U~gh)x dpx f fx(xg-')hx(xg-') dpx(X)= f fxhx dltx 

Hence. Ugfs Ugh. It easily follows that UgMe~(.~r This also shows that 
Ug is a unitary transformation from M onto UgM. �9 
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We interpret Ugf as the amplitude corresponding to f after the system 
has been transformed by the symmetry g. For M e ~ ' ( d )  we write gM= 
UgMeJg(d). Let S be the sector generated by M and gS the sector gener- 
ated by gM. Since Ug is a unitary transformation from M onto gM, Ug has 
a unique unitary extension, which we also denote by Ug, from S onto gS. 
Since Ug: S ~ gS is a unitary tansformation satisfying Ug,g2 = Ug, Ug 2, we call 
g~--~ Ug a generalized unitary representation of G. We use the adjective "gen- 
eralized" since Ug can map S onto another Hilbert space. For X e d ,  helix, 
we define (]gh(x)=h(xg-,) for every xeR(X). It follows from (3.1) that 

(Ugf)x(X) = Ugfx(x) (3.2) 

for every xeR(X):. As i n t h e p r o o f  of Theorem 3.2, Ug is a unitary operator 
on Hx satisfying Ug,g2 = Ug, Ugh. Hence, g~--~ ~'g is a unitary representation of  
G on Hx. 

We now give a simple, but important, example of a symmetry group on 
a catalog. We consider a physical system consisting of a particle of mass m 
moving in three-space •3. We then take as our sample space the phase space 

f2= ~6= {(q, p): q, p~R3} 

There are two natural measurements Q, P defined by Q(q, p) = q, P(q, p) = p. 
On the fiber 

O-'(q) = {(q, p): pel~ 3} 

we let E~ be the usual Borel o--algebra and t a k e / ~  to be Lebesgue measure. 
On the range R(Q) = R 3 we let Y.Q be the Borel o--algebra and again take pQ 
to be Lebesgue measure. Similar constructions are employed for P. In this 
way Q, P are measurements and d = { Q, P} is a catalog on 92. It is shown 
in Gudder (1988) that there exist many amplitudes on d .  Moreover, it is 
shown that this structure gives the same predictions as the usual nonrelativis- 
tic quantum mechanics. 

We now define the isochronous Galilei group G on 92. The elements of 
G are triplets g = (a, v, R), where a e ~3 represents a space translation, v ~ ~3 
a velocity boost, and ReSO(3) a rotation. The action of G on 92 is given by 

g(q, p) = (a, v, R)(q, p) = (a + Rq, my+ Rp) 

It is easy to check that the group multiplication becomes 

gig2 = (aj, vj, R0(a2, v2, R2) 

=(al  + Rla2, v, + Rlv2, RIR2) 

Moreover, it is straightforward to show that G is a symmetry group on d .  
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4. S Y S T E M S  OF C O V A R I A N C E  

We now prove our main result. This result shows that,~s is a generalized 
system of covariance for the generalized unitary representation Ug. 

Theorem 4.1. For every geG, SeSa(d) ,  X e d ,  APEx, we have 

Ug'XgS(A) Ug = f(S(g-' A) (4.1) 

Proof Suppose S is generated by M e J g ( d ) .  We first prove that 

U}M U, = (JgU~ (4.2) 

Lett ingfeM, xeR(X) ,  we have by (3.2) that 

( U~ M Ugf )(x) = (Ugf)x(X) = ~J.fx(x) = ( (]g Ueff f )(x) 

so (4.2) holds. We can extend (4.2) to S to obtain 

u~SUg = (JgU s (4.3) 

We now show that 

(JgeSx= PgxSUg (4.4) 

Let he uSs.  Then h= uSf ,  f eS ,  and by (4.3) 

gJgh= uuuS f = ugSUgfe U~xSgS 

Thus, 

e f  bgh= 5 h= O Plh 
Now suppose h e ( U s S ) • Then S h = o .  Let h' e ugS g S. Then h'= ugxS f ' 
for somef 'egS.  Hence, by (4.3) we have 

(];'h '= ~Jg-, vgSf '= US Ug , f '  e uS s 

Therefore, 

<tJgh, h'>= (h, Ug'h'> =0 

so that Oghe(UgxSgS) • Hence, pgxS(Jgh=O and (4.4) holds. 
We next show that 

Ug V s= V~xS fjg (4.5) 

Applying (4.3), we have 
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Hence, from (4.4) we obtain 

so (4.5) holds. We now show that 

z S ug  = 

Let t ingfeS ,  we have by (4.3) 

(ZA Uff Ugf)(x) = ZA(x)(U~rsugf)(x) = ZA(x)((-]gUS f ) (x)  

=Zg 'A(xg-')(uS f)(xg -') 

= ( (]gZg-'A uS f ) (x )  
so (4.6) holds. Finally, applying (4.6) and (4.5) gives 

xgS(a) Ug = VgxS~.A UgSUg = vgSOg~,g-lA U s 

= ugvSzg-,A uS= Ug~S(g-'A) 

(4.6) 

The result now follows. �9 
We say that G leaves sectors invariant if for every S e S e ( d )  we have 

gS= S. It is easy to see that G leaves sectors invariant if and only i f f s  h 
impliesfs  Ugh for every ge  G. This is equivalent to the following condition. 
I f  f ,  heM, for any M e ~ ' ( d ) ,  then for every X, Ye~r g~G, we have 

ffx(x)h-x(Xg-,) dpx(X)=;fy(y)hy(yg -,) dpr(y) 

Corollary 4.2. If  G leaves sectors invariant, then 

UglXS(A) Ug =XS(g-' A) (4.7) 

for all g~G, SESe(.~), X ~ d ,  A~Zx. 
Equation (4.7) is the usual condition for)~S to be a system of covariance 

for Ug and in this case Ug is a usual unitary representation of G. For X e d ,  
A SZx, define the projection operator Qx(A)h = zAh on Hx. Then A ~-~ Qx(A) 
is a projection-valued (PV) measure from Zx to Hx. We can now obtain a 
much simpler result than Theorem 4.1. Namely, for all A SEx 

(Jg' Qx( A) (Jg = Qx(g-' A) (4.8) 

To prove (4.8), letting h~Hx, we have 

((JgQx(g-'A)h)(x) = Xg-IA(Xg - ')h(xg ') 

= ZA(X)h(xg-') = (Qx(A) Ugh)(x) 

Hence, 

UgQx(g-' A) = Qx(A) ~]g 
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and (4.8) follows. This shows that Qx is a system of imprimitivity for the 
unitary representation ~/g. However, (4.8) has a much weaker interpretation 
than (4.1). This is because (4.8) concerns the representation of  a single 
measurement X on the Hilbert space Hx, while (4.1) represents all the meas- 
urements in ~r simultaneously on the Hilbert space S. Thus, in (4.8) a 
different Hilbert space Hx is used for each measurement X, while in (4.1) a 
single Hilbert space S is employed. In the latter case, various measurements 
can be compared or combined and this is impossible in the former case. 
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