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Systems of Covariance in Quantum Probability

Stanley Gudder'
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Symmetry groups and systems of covariance are investigated in the framework
of quantum probability theory. It is shown that a measurement X can be represen-
ted by a positive operator-valued measure X° on a sector S of the amplitude
space. Moreover, X* provides a generalized system of covariance for the gen-
eralized unitary representation of a symmetry group.

1. INTRODUCTION

The author has recently developed a quantum probability theory
(Gudder, 1988, 1989, 1990) based on ideas due to Feynman (1948 ; Feynman
and Hibbs, 1965). The main principle in this framework is that the amplitude
of a measurement outcome x is the “sum” of the amplitudes of the alterna-
tives (or samples) that result in x and the probability that x occurs is the
absolute value squared of its amplitude. 1 first review the mathematical
formulation of this principle. The basic concepts of this formulation are
measurements and amplitudes. These are defined as certain functions on the
sample space Q. I define a superposition relation on the set of amplitudes
and construct sectors in the amplitude space. These sectors correspond 1o
superselection sectors for a physical system. I then show that a measurement
X can be represented by a positive operator-valued measure X° on an arbi-
trary sector S.

The remainder of the paper is devoted to the study of symmetry groups.
A symmetry group G is defined as a group of bijections on the sample space
Q that preserve the measurement structure. A symmetry group induces a
generalized unitary representation U,, geG, on the amplitude space in a
natural way. The unitary transformations U,, geG, then map a sector §
onto other sectors U,S. The main result shows that X® provides a generalized
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system of covariancé for the generalized umtary representatlon Up. It is
shown that if G leaves sectors invariant, then X9 gives an ordinary system
of covariance for the unitary representation U,.

2. PRELIMINARY RESULTS

This section reviews some of the basic principles of quantum probability
theory and presents various preliminary results that will be needed in the
sequel. For further motivation and details see Gudder (1988, 1989, 1990).

Let Q be a nonempty set which we call a sample space and whose
elements we call sample points. A surjection X: Q — R(X) is a measurement
if the following conditions hold.

(M1) R(X) is the base space of a measure space (R(X), Xy, ux).
(M2) For every xe R(X), X '(x) is the base space of a measure space

(X2, Z%, p3)-

We call the elements of R(X) X-outcomes, the sets in Ly X-events, and
X7'(x) the fiber (or sample) over x. We call Hy=L*(R(X),Zx, ptx) the
Hilbert space for X. Denote by o (Q2) the set of all measurements on Q. A
subset .of <./ (Q) is called a catalog if for any @, ©'€Q there exists an Xe.o/
such that X(w)#X(w"). A function f: Q- C is an amplitude for a catalog
o if the following conditions hold.

(A1) fIX '(x)eL'(X ~'(x), £k, puX) for every xe R(X) and Xe«.
(A2) fx=[/fdpxeHy for all Xes/.
(A3) [ fxll =1l f~] for every X, Yeo/.

We denote the set of amplitudes for .o/ by #°(A4) and call #(A) the amplitude
space for /. For fe # () we write || f || =1 fx|l, where Xeo/ is arbitrary,
and if || /|| =1, we call f an amplitude density. Moreover, we denote the set
of amplitude densities by 2(«f). Notice that if fes# (o), aeC, then
afe# () and |laff|=lal | fIl. Also, if fes(of) with ||f] #0, then
fNflle2(sf).

If feD(f), we call fy the (X, f)-wave function. We interpret f(@) as
the amplitude of the sample point @ and fx(x) as the probability amplitude
of the X-outcome x. The probability density at x is then given by | fx(x)*.
We define the (X, f)-probability of an X-event A by

Py p(A)= f | £l dpix

Notice that Py ,is a probability measure on Xy which we call the f-distribu-
tion of X.
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For f, ge # () we write f's g if for every X, Ye.o/ we have
ffxgx dpx= Jf v&vdpy (2.1

If (2.1) holds, we denote this expression by { f, g>. Notice that s is a reflexive,
symmetric relation and if f s g, then af s g for all aeC. We call 5 the
superposition relation.

Theorem 2.1. Let f, ge # (/). Then fs g if and only if f+g,

[rigesf ()

Proof. Suppose fsg. Then f+g clearly satisfies (Al) and (A2).
Moreover,

Jl(f+g)xlz dpx= Ji(f,x"*'.g',\’ﬂ2 dpx
=l fI>+lgl*+2Re fog_x dpx (2.2)

so condition (A3) holds. Hence, f+ ge#(of). Since fs (ig), it follows that
f+ige A (). Conversely, if f+ge# (), then from (2.2) we have

Re fogx dux=Re nygy duy
for every X, Ye/. If, in addition, [+ ige # (<), then since
j!(f+ ig)xl" dpx= fl(fx+ igx )’ dpx
=1/ 1*+llgl*+2 Im ffxgx dpx
we have
Im jfxgx dpx=Im ffygr duy

for every X, Yeo/. It follows that fsg. M
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Corollary 2.2. For f,ge # (4), fsg if and only if af+bge # () for
every a, beC.
For BS # (/) we write

B'={feAH(A):fsg for all geB}

We call B #(of) an s-set if B€ B®, Thus, B is an s-set if and only if fs g
for every f, ge B. It is clear that singleton sets are s-sets and hence every
fes#(of) is contained in an s-set. Moreover, by Zorn’s lemma, every s-set
is contained in a maximal s-set. We denote the collection of maximal s-sets
by # (/). An element of .#(s/) is a maximal set of amplitudes for which
superpositions are allowed. They correspond to superselection sectors for a
physical system. Let Me # (/). If f, geM, a, beC, then by Corollary 2.2,
af + bge # (). Also, it is clear that (af+bg) s h for every he M. Since M is
maximal, af+bge M. Hence, M is a linear space. We call fe # (o) a null
amplitude if || f||=0. It is clear that the set of null amplitudes forms a
subspace of every Me.# (/). If we identify amplitudes that differ by a null
amplitude, it is straightforward to show that (-, - ) is an inner product on
M. The Hilbert space formed by completing M relative to this inner product
is called the sector generated by M. The collection of all sectors is denoted
S (o). In general, of can have many sectors (Gudder, to appear).

In the sequel, S will denote a fixed sector generated by Me.# (/). For
Xeof, define UY: M — Hy by UY f=f¢. Then U¥ is a linear transformation
satisfying

UK, UXed=<f.&> (2.3)

for all f, ge M. Since M is dense in S, there exists a unique linear extension
U3 of UY . It follows from (2.3) that U3: S — Hyisa unitary transformation
and its range U%S is a closed subspace of Hy. Let P5 be the orthogonal
projection of HX onto U3S and define V§: Hy— S by VX (U3 'Py.
Notlce that UXVX Py and V3U3=1I For AeZy define X (A) S-S by
X5(4)=V3y.Us, where x 4 is the characteristic function projection
% ,,h(x) 2.4(x)h(x). Clearly, X S(A) is a bounded linear operator. Moreover,
X S(A) is positive since

XSS >=V AU LI ={P3x UL, USRS
= aUS L USSO= 2 USf 1?20 (2.4)

for all fe S. We also obtain from (2.4) that

ENALL<IfI?
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s0 0<XS<I If feD(£) N S, then applying (2.4) gives

XSS >= 174 Sx)?= Py s(A)

s0 X° determines the [f-distribution of X. Finally, AHX (A) is a positive
operator-valued (POV) measure from Zy to S. Indeed, X S(R(X))=1I and if
A;€Xy are mutually disjoint, then

XS0 A)=Vix o aUS=VEY 24Us=Y Vix,Us=3 X5(4;)

where convergence is in the strong operator topology. We conclude that
every Xe.o/ can be represented by a POV measure from Xy to S.

3. SYMMETRY GROUPS

If g1, g» are bijections from € onto , we denote their composition g, - g,
simply by g;g>. Under this operation, the set of all bijections G becomes a
group. The identity e€G is the identity function. If ge G, B=Q, we use the
notation

gB={g(w): weB}

For a catalog </ =% (Q), we say that a subgroup G& G preserves fibers if
for every Xe.of, xe R(X), geG, gX ~'(x) is an X-fiber. Clearly, if G preserves
fibers, then for fixed ge G, the map X ~'(x)>gX ~'(x) is a bijection on the
set of X-fibers. Moreover, for xe R(X), geG there exists a unique x e R(X)
such that gX '(x)=X"'(x,). Hence, x> x, is a function from R(X)
into R(X).

Lemma 3.1. If G preserves fibers, then x— X, is a bijection on R(X) for
every Xesf, geG and x,,,,= (X,,),, for every g1, g2€G.

Proof. To show that x+>x, is injective, suppose x,=Xx,. Then
gX 7 '(x)=gX7'(x'), so X '(x)=X"'(x') and x=x". To show that x+>x, is
surjective, let xe R(X). Then g~'X ~'(x) =X ~'(x,-1). Hence

X7 () =gX " (xg) =X (g )]
Therefore, x=(x,),. Finally, for g,, g.€ G we have
X (e ] = 81X 7 (%) =£182X 7' (X) =X (Xgg,)
Hence, Xz, =(x,,),,. M
If G preserves fibers, geG, and A = R(X), we use the notation
gA={x,: xeA}
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We say that G preserves events if for every Xe.of, ge G, Ar>gA is a bijection
on Xy. If G preserves fibers and events, then G is a symmetry group on o if
for every Xe .o/ we have:

(S1) glXx ~'(x) map Zx onto ¥ and pu¥(gB)=u}(B) for every xe R(X)
and BeX}.
(S2) px(gA)=px(A) for all AeXy.

In the sequel, G will denote a symmetry group on .«/. We interpret G as a
group of bijections that preserves the measurement structure. For fe #° (<),
geG, define U, f: Q~ C by U, f(®)=f(g"'®). Notice that U,=1.

Theorem 3.2. (a) The map U, is a bijection on (/) satisfying
Uy o= U U, for every gy, £,€G. (b) If Me#() then UMe #() and
U, is a unitary transformation from M onto U M.

Proof. (a) For fe#(A), Xed, U, f satisfies (Al), and by (S1) we
have

r

(Ve f)x= U, f(®) dpx(o)
v X_I(x)

n

= [(g7 o) du¥(w)

Yx =
= fg" o) duy (g7 o)
Yx (g
= fx(xg1) (3.1

Hence, applying (S2) gives
(U f)x]?= Jlfx(xg*')l2 dpx(x)= j | () dp ()=l fl?

Thus, U, fe # (). It is clear that U, is injective. To show that U, is surjec-
tive, suppose he # (of). Define /- Q— C by f(0)=h(gw). Then fe # (/)
and U, f=h. Finally, we have for fe #(«/)

Uglng(w) =f(85]gflw) = ngf(gl—lm) = U&’v ng ((D)
(b) If f5s h, then by (S2) and (3.1) we have

J(Ugf Vx(Ugh)x dux JfX(xg_')EX(xg_l) dpx(x) = foﬁx dpx

Hence, U, f's U,h. It easily follows that U,Me.# (/). This also shows that
U, is a unitary transformation from M onto U,M. W
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We interpret U, f as the amplitude corresponding to f after the system
has been transformed by the symmetry g. For Me.#(o/) we write gM =
UMe #(s£). Let S be the sector generated by M and gS the sector gener-
ated by gM. Since U, is a unitary transformation from M onto gM, U, has
a unique unitary extension, which we also denote by U, from S onto g§.
Since Uy,: S — g8 is a unitary tansformation satisfying Uy, = U,, U,,, we call
g U, a generalized unitary representation of G. We use the adjective “‘gen-
erahzed” smce U, can map S onto another Hilbert space. For Xe s, he Hy,
we define U h(x) h(x,) for every xe R(X). It follows from (3.1) that

(Up (%)= Ty f(x) (3.2)

for every xe R(X). As in the proof of Theorem 3.2, (7 is a unitary operator
on Hy satisfying Ug,g2 UgI ng Hence, g— U is a unitary representation of
G on Hy.

We now give a simple, but important, example of a symmetry group on
a catalog. We consider a physical system consisting of a particie of mass m
moving in three-space R’. We then take as our sample space the phase space

Q=R°={(q,p): q, peR’}

There are two natural measurements Q, P defined by Q(q, p) =q, P(q, p) =
On the fiber

Q“(q)= {(q, p): peR’}

we let £ be the usual Borel o-algebra and take u$ to be Lebesgue measure.
On the range R(Q)=R* we let £, be the Borel o-algebra and again take g,
to be Lebesgue measure. Similar constructions are employed for P. In this
way Q, P are measurements and ./ = {Q, P} is a catalog on Q. It is shown
in Gudder (1988) that there exist many amplitudes on /. Moreover, it is
shown that this structure gives the same predictions as the usual nonrelativis-
tic quantum mechanics.

We now define the isochronous Galilei group G on Q. The elements of
G are triplets g=(a, v, R), where ac R’ represents a space translation, ve R®
a velocity boost, and Re SO(3) a rotation. The action of G on Q is given by

g(q, p)=(a, v, R)(q, p)=(a+ Rq, mv+ Rp)

It is easy to check that the group multiplication becomes

g1g82=(a;,v;, Ry)(az, V2, Ry)
=(a;+ Ria;, Vi + Riv;, RiRy)

Moreover, it is straightforward to show that G is a symmetry group on /.
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4. SYSTEMS OF COVARIANCE

We now prove our main result. This result shows that XSisa generalized
system of covariance for the generalized unitary representation U,.

Theorem 4.1. For every geG, Se S (), Xed, AecZy, we have
U;' XA U,=X5(g7' 1) (4.1)

Proof. Suppose S is generated by Me # (/). We first prove that
UMu,=U,UY (4.2)
Letting fe M, xe R(X'), we have by (3.2) that
UR U N0 = (U Nxx) = Uy fx(0) = (G,UX 1))
$0 .(4.2) holds. We can extend (4.2) to S to obtain

U$U,=U,U% (4.3)
We now show that
U.P5=PYUs (4.4)

Let he U3S. Then h= U3 f, €S, and by (4.3)
Uh=U,U3 f=USU, feUFeS
Thus,
PEUh=Uh=UP3h

Now suppose he(U5S)*. Then U,P§h=0. Let k'e U$gS. Then k' = ULS"
for some f’'egS. Hence, by (4.3) we have

U;'W=U, UL =UsU, f e USS
Therefore,
Uk, Wy =<h, U7y =0

so that Uhe(U5gS)" . Hence, P Uh=0 and (4.4) holds.
We next show that

U, Vi=VveU, (4.5)
Applying (4.3), we have
U,=V§¥U,Us
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Hence, from (4.4) we obtain
U Vi=VE&UPi=VEPEU,=VET,
so (4.5) holds. We now show that
2aUFUp=Upy 14Uk (4.6)
Letting f€S, we have by (4.3)
AU Up )X = 14U U )3 = 2 XN T U5 1))
=25 () Ux /) x )
= (Uit aUS £)(x)
s0 (4.6) holds. Finally, applying (4.6) and (4.5) gives
XS AU, =V U U=V U,z 4US
= UV 32 U= U X5(g 7' 4)

The result now follows. W

We say that G leaves sectors invariant if for every Se. (/) we have
gS=_S. It is easy to see that G leaves sectors invariant if and only if fs h
implies f's Ugh for every geG. This is equivalent to the following condition.
If f, he M, for any Me # (), then for every X, Yef, geG, we have

jfx(x)ﬁx(xg") dpx(x)= jf)( J’)Ey( Y1) duy(y)

Corollary 4.2. If G leaves sectors invariant, then
U;' XS(A) U, =X5(g"' 4) (4.7)

for all geG, Se ¥ (), Xeol, AcXy. .

Equation (4.7) is the usual condition for X ° to be a system of covariance
for U, and in this case U, is a usual unitary representation of G. For Xe <,
AeZy, define the projection operator Qx(A)r= y shon Hy. Then A— Ox(A)
is a projection-valued (PV) measure from Xy to Hy. We can now obtain a
much simpler result than Theorem 4.1. Namely, for all 4eXy

U;' Qx(A)Up= 0x(g™' 4) (4.8)
To prove (4.8), letting he Hy, we have
(UeQx(g™ A (xX) = g~ a5 V(1)
= 2 () (xg) = (Qx(A) Ugh) (x)
Hence,
UpQx(g™' 4) = 0x(A) T,
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and (4.8) follows. This shows that Oy is a system of imprimitivity for the
unitary representation U,. However, (4.8) has a much weaker interpretation
than (4.1). This is because (4.8) concerns the representation of a single
measurement X on the Hilbert space Hy, while (4.1) represents all the meas-
urements in o/ simultaneously on the Hilbert space S. Thus, in (4.8) a
different Hilbert space Hy is used for each measurement X, while in (4.1) a
single Hilbert space S is employed. In the latter case, various measurements
can be compared or combined and this is impossible in the former case.
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